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Lecture Outline @

Topics covered in this presentation
» Poles & zeros
» First-order systems

» Second-order systems
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B 4 Time response

m 4.2 Poles, zeros, and system response



Poles of a TF

» Values of the Laplace transform

variable, s, that cause the TF
to become infinite

» Any roots of the denominator
of the TF that are common to
the roots of the numerator
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Figure: a. system showing input &

output, b. pole-zero plot of the system;
c. evolution of a system response

Natural response
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output, b. pole-zero plot of the system;
c. evolution of a system response



System response characteristics %

J
Pole at —a generates A
| response Ke— a1 s-plane
» Foles of a TF: Generate the \
form of the natural response
¥ - (7
» Poles of a input function: -
Generate the form of the forced

response _ _
Figure: Effect of a real-axis pole upon

transient res ponse



System response characteristics C%)

» Pole on the real axis:
Generates an exponential

jo
response of the form e %%, Pole al — generates A
where —a is the pole location response Ke ™! s-plane
on the real axis. The farther to \
the left a pole is on the = g
negative real axis, the faster h
the exponential transient

response will decay to zero. Figure: Effect of a real-axis pole upon

» /eros and poles: Generate the  transient response
amplitudes for both the forced

and natural responses



B 4 Time response

m 4.3 First-order systems
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Introduction C-%D

15t-order system without zeros TF

_C(s)  a
Gls) = R(s) s+a
Unit step input TF

R(s) = s 1

System response in frequency domain

s(s+a)

C(s) = R(s)G(s) =

System response in time domain

c(t)=cp(t) +ep(t) =1 —e*

G(s)
R(s) a C(s)
s+a .
j®
A
s-plane
X - O

Figure: 1%'-order system;
pole-plot



Characteristics

» [ime constant, % The time
for e to decay to 37% of its
initial value. Alternatively, the
time it takes for the step
response to rise to 63% of its
final value.
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Figure: 1%'-order system response to a

unit step
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Characteristics

Exponential frequency, a: The

reciprocal of the time constant.

The initial rate of change of
the exponential at ¢t = 0, since
the derivative of e is —a
when ¢ = 0. Since the pole of
the TF is at —a, the farther
the pole is from the imaginary
axis, the faster the transient
response.
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0.9 / /
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Figure: 1%*-order system response to a

unit step



Characteristics

» Rise time, T,: The time for the
waveform to go from 0.1 to 0.9
of its final value. The
difference in time between

c(t) =0.9 and ¢(t) = 0.1.

T, = ==
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2.2
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Figure: 1%t-order system response to a

unit step



Characteristics

» 2% Settling time, Ts: The time
for the response to reach, and
stay within, 2% (arbitrary) of
its final value. The time when

c(t) = 0.98.
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Figure: 1%t-order system response to a

unit step
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m 4.4 Second-order systems: introduction
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G(s)
1
.. R(s) =< C(s)
» 2 finite poles: 2 real poles or complex pole e 53+;s+b =
pair determined by parameters a and b
: . ‘ ﬂ-d
» No zeros Figure: General 2"%-order

system



Overdamped response

>

1 pole at origin from the unit step input
System poles: 2 real at o¢, o9

Natural response: Summation of 2
exponentials

c(t) = Kiem 71 4 Koe™ 72!

Time constants: —oy, —09

w  OP

R(s) = % 0 C(s) .~
T2+ 9s +9
Jjw
A
s-plane
¥ * - 0
=71.854 —1.146

c(t) e(t)y=1+0.171e 7834 —
1oL [.171e1-146t




Underdamped response

>

>

1 pole at origin from the unit step input
System poles: 2 complex at o4 + jwq

Natural response: Damped sinusoid with
an exponential envelope

c(t) = Kie 74'cos(wqt — @)

Time constant: oy

Frequency (rad/s): wq

Gl(s) ga

[R—y

R(s) =5 9 C(s)
- = -
s<+25+9
J
s-plane $ ,

X _,.'1-'8

- O
-1
X |-j¥8

c(t) c(t)=1-e(cosV8t Jr"r%- sinV81)

=1-1.06e cos(/8t-19.47°)

T T T 1 1 1=
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Underdamped response characteristics C%)

Iransient response: Exponentially decaying
amplitude generated by the real part of the
system pole times a sinusoidal waveform
generated by the imaginary part of the
system pole.

Damped frequency of oscillation, wgq: The
imaginary part part of the system poles.

Steady state response: Generated by the
input pole located at the origin.

Underdamped response: Approaches a
steady state value via a transient response
that is a damped oscillation.

()

4 Exponential decay generated by

real part of complex pole pair

Sinusoidal oscillation generated by
imaginary part of complex pole pair

-
Figure: 2™ _order step
response components

generated by complex
poles



Undamped response GGs) %
R(s) = C(s)

:-"JI—-

—_— g -
5s2+9
j@
s-plane .
» 1 pole at origin from the unit step input J-
» System poles: 2 imaginary at +jwq =
» Natural response: Undamped sinusoid 4( —3
(t) = Ac t— ¢ )
C(' ) cos (wl : ) A cn=1-cos 3t

» Frequency: wq




Critically damped response @

>

>

»

>

G(s)
1
R{slzg__ 0 C(s) .~

s2+6s5+0
1 pole at origin from the unit step input J’f’
System poles: 2 multiple real s-plane
Natural response: Summation of an
exponential and a product of time and an X - G
exponential -3

c(t) = Kie 71 4 Kote 711 oD

Time constant: oy

Note: Fastest response without overshoot
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Overdamped
Underdamped
Undamped
Critically damped

tep response damping cases

c(h)

A
Undamped

Under-
damped

Critically
damped

4L Overdamped

0 0.5 1 1.5

Figure: Step responses for

damping cases

2

2.5 3 3.5

9 nd

-order system



B 4 Time response

m 4.5 The general second-order system
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» General TF

b w,%

G(s) == = — .
(5) s?+as+b 5?24 20wps + w?

where

a
a = QCWn, b — wg, C — , Wn = \/g

2wn

» Natural frequency, wn
» The frequency of oscillation of the system without damping

» Damping ratio,



Response as a function of (

e

4 Poles Step response
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B 4 Time response

m 4.6 Underdamped second-order systems
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Output Response (Laplace domain):

2

[ |
“n

Cls) = s(s% + 2Cwy s + w?)

...partial fraction expansion...
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Time domain via inverse Laplace transform

c(t)=1— oCwnt ({'«Ds( V1 — )t + \/f—? sin (wpy/ 1 — Cg)t)

...trigonometry & exponential relations...

:1—\/11_—‘:‘2 —6wnt cos(wpy/ 1 — C2 —

where

¢
Ji-a

¢ = tan™(

)



Responses for ( values @

cla ,t)

A
1.8 =.1
Response versus ( plotted along a '¢f 2
[ n " ]'4_
time axis normalized to w,, oL =
1.0 | p /\
» Lower ¢ produce a more ol ;
oscillatory response 06
04 F
» wy does not affect the nature |
of the response other than 0 123 45678 9100 121314151617 "

scaling it in time
Figure: 2% order underdamped

responses for damping ratio values



Response specifications

» Rise time, T,: Time required
for the waveform to go from
0.1 of the final value to 0.9 of
the final value

» Peak time, T},: Time required
to reach the first, or maximum,
peak

i)

Y

C Mmax

[ .[]Zfﬁ_na|
\

Cfinal

0.98cfinal f/

0.9¢ip)

"

/
0. legpa _-F_fi

-

T, | IP. T,

Figure: 2"9_order underdamped
response specifications



Response specifications @

clf)

» Overshoot, % OS: The amount

that the waveform overshoots :T;m - / \
the steady state, or final, value cw ——— ———
at the peak time, expressed as 0980t / | o
a percentage of the steady 0.9¢ 0
state value
» Settling time, T,: Time
required for the transient’s 0,150 __,1-“:
damped oscillations to reach __i] I e 1 r -

r

. - |::|'-
and stay within £27% of the Figure: 2™_order underdamped

steady state value response specifications



Evaluation of 7, @

T} is found by differentiating ¢(¢) and finding the zero crossing after t = 0,
which is simplified by applying a derivative in the frequency domain and
assuming zero initial conditions.

w2

s2 + 2¢wns + w2

L[e(t)] = sC(s) =

...completing the squares in the denominator
...setting the derivative to zero

m

Ty =



Evaluation of %0OS

%O0S is found by evaluating

%08 —= Cmax — Cfinal % 100

Cfinal

where

Cmax — ﬂ(Tp)a Cfinal = 1

...substitution

_'::T

%08 = evi-< x 100

¢ given %0OS

%08
— In( fiﬂﬂ_)

27 %OS
\/Wg +In*(453)

¢ =

GeOS

Percent overshoot,

0.1

02 03 04 05 06
Damping ratio, {

Figure: %0S vs. ¢

0.7

0.8



Evaluation of 7, %

Find the time for which ¢(¢) reaches and stays within +2% of the steady
state value, cgna, 1.€., the time it takes for the amplitude of the decaying
sinusoid to reach 0.02

. 1
g Cwnt = 0.02

Ji=¢

This equation is a conservative estimate, since we are assuming that

cos(wnV1—Ct—¢)=1

Settling time

T In(0.024/1 — ¢?)
’ Q7
Approximated by




Evaluation of T’

A precise analytical relationship
between T} and { cannot be found.
However, using a computer, T,. can

be found

1. Designate w,,t as the
normalized time variable

2. Select a value for ¢

3. Solve for the values of w,t that
yield ¢(t) = 0.9 and ¢(t) = 0.1

4. The normalized rise time wy, T
is the difference between those

two values of w,,t for that
value of ¢

Rise time X Natural frequency

Damping | Normalized
A ratio rise time
30 0.1 1.104
B 0.2 1.203
28 0.3 1.321
26 04 1.463
0.5 1.638
24
0.6 1.854
22 0.7 2.126
20k 0.8 2.467
0.9 2.883

—_ -
SN - <]

1.2

1.0 | | | | | | | L

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Damping ratio

Figure: Normalized T;. vs. ( for a
2"4_order underdamped response



L ocation of poles C%)

ja
A
» Natural frequency, wy: Radial . 5
| no RAQEDL s -+ jon/1- 02 = oy
distance from the origin to the |
| Wy s-plane
pole |
. L . | 6
» Damping ratio, (. Ratio of the 5 —— =o
magnitude of the real part of |
|
the system poles over the |
g P ¥ ———————— - V1 - § =—jay
natural frequency
cos(f) = “n ¢ |
Wn Figure: Pole plot for an underdamped

274 _order system



Location of poles

» Damped frequency of

oscill:

ition, wy: Imaginary part

of the system poles

wg = wnV1—(?

» Exponential damping
frequency, oq: Magnitude of
the real part of the system

poles

» Poles

od = Cwn

§19 = —04 T jwg

&

———————— — + ja V' 1 - gl :j{”d

|

: @y s-plane

|

I 0 -c
—Lwp=—0y

|

|

|

|

*_ ________ — V1 - 2 =—Jwy

Figure: Pole plot for an underdamped
2nd_order system



Summary C-(%D

* Transient time response

* First-order system

* time constant

* Specs: rise time, settling time
e Second-order system

e Underdamped

* Critically damped

* Underdamped

 Damping ratio, undamped natural frequency: ({, w,)
* Specs: rise time, settling time, percentage overshoot, peak time

* Next, modeling the dc-to-dc converter system (the
system in the labs)
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